
1 
 

    Unit – III 
[Software requirement analysis and specification & Software Architecture] 

 
 

1. Value of good SRS : 

 
The origin of most software systems is in the needs of some clients. The software system 

itself is created by some developers. Finally, the completed system will be used by the end 

users. Thus, there are three major parties interested in a new system: the client, the developer, 

and the users. Somehow the requirements for the system that will satisfy the needs of the 

clients and the concerns of the users have to be communicated to the developer. The problem 

is that the client usually does not understand software or the software development process, 

and the developer often does not understand the client’s problem and application area. This 

causes a communication gap between the parties involved in the development project.  

 

A basic purpose of the SRS is to bridge this communication gap so they have a shared 

vision of the software being built. Hence, one of the main advantages of a good SRS is: 

1. An SRS establishes the basis for agreement between the client and the supplier 

on what the software product will do. 

This basis for agreement is frequently formalized into a legal contract between the client (or 

the customer) and the developer (the supplier). So, through SRS, the client clearly describes 

what it expects from the supplier, and the developer clearly understands what capabilities to 

build in the software. A related, but important, advantage is: 

2. An SRS provides a reference for validation of the final product. 

That is, the SRS helps the client determine if the software meets the requirements. Without a 

proper SRS, there is no way a client can determine if the software being delivered is what 

was ordered, and there is no way the developer can convince the client that all the 

requirements have been fulfilled. 

 

3. A high-quality SRS is a prerequisite to high-quality software. 

 

4. A high-quality SRS reduces the development cost. 

 

 

 

 

 

 

 

 



2 
 

2.  Requirement Process: 

 
 

The requirement process is the sequence of activities that need to be performed in the 

requirements phase and that culminate in producing a high-quality document containing the 

SRS.  

 

The requirements process typically consists of three basic tasks: 

 

1. problem or requirement analysis 

2. Requirements specification 

3. Requirements validation. 

 

 

1. Problem or Requirement analysis: 
 

 

 Problem analysis often starts with a high-level “problem statement”. 

 The basic purpose of this activity is to obtain a thorough understanding of what the 

software  needs to provide.  

 

 Frequently, during analysis, the analyst will have a series of meetings with the clients 

and end users. In the early meetings, the clients and end users will explain to the 

analyst about their work, their environment, and their needs as they perceive them.  

 

 In the final few meetings, the analyst essentially explains to the client what he 

understands the system should do and uses the meetings as a means of verifying if 

what he proposes the system should do is indeed consistent with the objectives of the 

clients. 

 

2. Requirements specification : 
 

  

The understanding obtained by problem analysis forms the basis of requirements 

specification, in which the focus is on clearly specifying the requirements in a 

document.  

 

 Issues such as representation, specification languages, and tools are addressed during 

this activity. As analysis produces large amounts of information and knowledge with 

possible redundancies, properly organizing and describing the requirements is an 

important goal of this activity. 

 

3. Requirements validation : 
  

Requirements validation focuses on ensuring that what have been specified in the SRS 

are indeed all the requirements of the software and making sure that the SRS is of 

good quality. The requirements process terminates with the production of the 

validated SRS.  



3 
 

  

Figure 1: The requirement process 

 

 The overall requirement process is shown in Figure 1. As shown in the figure, from 

the specification activity we may go back to the analysis activity.  

 

 This happens as frequently some parts of the problem are analyzed and then specified 

before other parts are analyzed and specified.  

 

 Furthermore, the process of specification frequently shows shortcomings in the 

knowledge of the problem, thereby necessitating further analysis.  

 

 Once the specification is done, it goes through the validation activity. This activity 

may reveal problems in the specification itself, which requires going back to the 

specification step, or may reveal shortcomings in the understanding of the problem, 

which requires going back to the analysis activity. 

 

 

 

 

 

 

 

 

 

 



4 
 

3.Requirement Specification : 

 

 

What is Software Requirement Specification - 

[SRS]? 
A software requirements specification (SRS) is a document that captures complete 

description about how the system is expected to perform. It is usually signed off at the end 

of requirements engineering phase. 

 Some of the desirable characteristics of an SRS are [53]: 

1. Correct 

2. Complete 

3. Unambiguous 

4. Verifiable 

5. Consistent 

6. Ranked for importance and/or stability 

 

1. An SRS is correct if every requirement included in the SRS represents something 

required in the final system. 

 

2. It is complete if everything the software is supposed to do and the responses of the 

software to all classes of input data are specified in the SRS.  

 

3. It is unambiguous if and only if every requirement stated has one and only one 

interpretation. Requirements are often written in natural language, which is inherently 

ambiguous. If the requirements are specified in a natural language, the SRS writer has 

to be especially careful to ensure that there are no ambiguities. 

 

4. An SRS is verifiable if and only if every stated requirement is verifiable. A 

requirement is verifiable if there exists some cost-effective process that can check 

whether the final software meets that requirement.  

 

5. It is consistent if there is no requirement that conflicts with another. Terminology 

can cause inconsistencies; for example, different requirements may use different 

terms to refer to the same object. There may be logical or temporal conflict between 

requirements that causes inconsistencies. This occurs if the SRS contains two or 

together by any software system. For example, suppose a requirement states that an 

event e is to occur before another event f. But then another set of requirements states 

(directly or indirectly by transitivity) that event f should occur before event 

e. Inconsistencies in an SRS can reflect some major problems. 

 

 



5 
 

6.  

An SRS is ranked for importance and/or stability if for each requirement the 

importance and the stability of the requirement are indicated. Stability of a 

requirement reflects the chances of it changing in the future. It can be reflected in 

terms of the expected change volume. This understanding of value each requirement 

provides is essential for iterative development—selection of requirements for an 

iteration is based on this evaluation. 

 

Of all these characteristics, completeness is perhaps the most important and also the most 

difficult property to establish. One of the most common defects in requirements specification 

is incompleteness. Missing requirements necessitate additions and modifications to the 

requirements later in the development cycle, which are often expensive to incorporate. 

Incompleteness is also a major source of disagreement between the client and the supplier. 

 

. 

4. COMPONENTS OF AN SRS 

Here we describe some of system properties that an SRS should specify.  

The basic issues, an SRS must address are: 

1. Functional requirements 

2. Performance requirements 

3. Design constraints 

4. External interface requirements 

Conceptually, any SRS should have these components. Now we will discuss them one by 

one. 

1. Functional Requirements 

Functional requirements specify what output should be produced from the given inputs. So 

they basically describe the connectivity between the input and output of the system. For each 

functional requirement:  

1. A detailed description  of all the  data inputs  and their  sources, the units  of measure, and 

the range  of valid inputs  be specified: 

2. All the operations  to be  performed on the input data obtain  the output  should be 

specified, and 

3. Care must be taken not to specify any algorithms that are not parts of the system but that 

may be needed to implement the system. 



6 
 

4. It must clearly state  what the  system should do if  system behaves abnormally when any  

invalid input is given  or due  to some  error  during  computation. Specifically, it should 

specify the behaviour of the system for invalid inputs and invalid outputs. 

2. Performance Requirements (Speed Requirements) 

This part of an SRS specifies the performance constraints on the software system. All the 

requirements related to the performance characteristics of the system must be clearly 

specified. Performance requirements are typically expressed as processed transaction s per 

second or response time from the system for a user event or screen refresh time or a 

combination of these. It is a good idea to pin down performance requirements for the most 

used or critical transactions, user events and screens. 

2. Design Constraints 

The client environment may restrict the designer to include some design constraints that must 

be followed. The various design constraints are standard compliance, resource limits, 

operating environment, reliability and security requirements and policies that may have an 

impact on the design of the system. An SRS should identify and specify all such constraints. 

Standard Compliance: It specifies the requirements for the standard the system must follow. 

The standards may include the report format   and according procedures. 

Hardware Limitations: The software needs some existing or predetermined hardware to 

operate, thus imposing restrictions on the design. Hardware limitations can includes the types 

of machines to be used operating system availability memory space etc. 

Fault Tolerance:  Fault tolerance requirements can place a major constraint on how the 

system is to be designed. Fault tolerance requirements often make the system more complex 

and expensive, so they should be minimized.   

Security: Currently security requirements have become essential and major for all types of 

systems. Security requirements place restriction s on the use of certain commands control 

access to database, provide different kinds of access, requirements for different people, 

require the use of passwords and cryptography techniques, and maintain a log of activities in 

the system. 

4. External Interface Requirements 

For each external interface requirements: 

1. All the possible interactions of the software with people hardware and other software 

should be clearly specified, 

2. The characteristics of each user interface of the software product should be specified and 

3. The SRS should specify the logical characteristics of each interface between the software 

product and the hardware components for hardware interfacing. 



7 
 

 

5.Structure of a Requirements Document 
 

The IEEE standards recognize the fact that different projects may require their requirements 

to be organized differently, that is, there is no one method that is suitable for all projects. It 

provides different ways of structuring the SRS. The first two sections of the SRS are the same 

in all of them. The general structure of an SRS is  
 

  
Figure : General structure of an SRS 

 

 
 

Figure : One organization for specific requirements 
 
 

 The introduction section contains the purpose, scope, overview, etc., of the 

requirements document. The key aspect here is to clarify the motivation and 

business objectives that are driving this project, and the scope of the project.  

 

 The next section gives an overall perspective of the system—how it fits into the larger 

system, and an overview of all the requirements of this system. 

 



8 
 

 Product perspective is essentially the relationship of the product to other products; 

defining if the product is independent or is a part of a larger product, and what the 

principal interfaces of the product are. A general abstract description of the functions 

to be performed by the product is given.  

 

 

 The detailed requirements section describes the details of the requirements that a 

developer needs to know for designing and developing the system. This is typically 

the largest and most important part of the document. For this section, different 

organizations have been suggested in the standard.  

 

 One method to organize the specific requirements is to first specify the external 

interfaces, followed by functional requirements, performance requirements, design 

constraints, and system attributes. This structure is shown in Figure. 

 

 In the functional requirements section, the functional capabilities of the system are 

described. 

 

 The performance section should specify both static and dynamic performance 

requirements. 

 

 

6. Functional Specifications With Use Cases : 
 

 Functional requirements often form the core of a requirements document. The 

traditional approach for specifying functionality is to specify each function that the 

system should provide.  

 

 Use cases specify the functionality of a system by specifying the behavior of the 

system, captured as interactions of the users with the system.  

 

 Use cases can be used to describe the business processes of the larger business or 

organization that deploys the software, or it could just describe the behavior of the 

software system. We will focus on describing the behavior of software systems that 

are to be built. 

 

Though use cases are primarily for specifying behavior, they can also be used effectively for 

analysis.  

 

Use -Case Terms 

 

Actor  :In UML, someone or something outside the system that interacts with the  

  system. 

 

Primary actor : The main actor for whom a use case is initiated and whose goal satisfaction 

  is the main objective of the use case. 

 

Scenario : a set of actions that are performed to achieve a goal under some specified 

  conditions. 

 



9 
 

Main Success scenario: Describes the interaction if nothing fails and all steps in the scenario 

   succeed. 

 

Extension scenario: Describes the system behaviour if some of the steps in the main scenario 

         do not complete successfully. 

 

 

7. NOTE : PRACTICE USE CASE , DFD’S , ERD 

DIAGRAMS FROM ASSAIGNMENT . 

 

 

8. Developing Use Cases : 

 
UCs can be evolved in a stepwise refinement manner with each step adding more details. 

This approach allows UCs to be presented at different levels of abstraction. Though any 

number of levels of abstraction is possible, four natural levels emerge: 

 

 

 Actors and goals. The actor-goal list enumerates the use cases and specifies the 

actors for each goal. (The name of the use case is generally the goal.) This table may 

be extended by giving a brief description of each of the use cases. At this level, the 

use cases together specify the scope of the system and give an overall view of what it 

does. Completeness of functionality can be assessed fairly well by reviewing these. 

 Main success scenarios. For each of the use cases, the main success scenarios are 

provided at this level. With the main scenarios, the system behavior for each use case 

is specified. This description can be reviewed to ensure that interests of all the 

stakeholders are met and that the use case is delivering the desired behavior. 

 Failure conditions. Once the success scenario is listed, all the possible failure 

conditions can be identified. At this level, for each step in the main success scenario, 

the different ways in which a step can fail form the failure conditions. Before deciding 

what should be done in these failure conditions (which is done at the next level), it is 

better to enumerate the failure conditions and review for completeness. 

 Failure handling. This is perhaps the most tricky and difficult part of writing a use 

case. Often the focus is so much on the main functionality that people do not pay 

attention to how failures should be handled. Determining what should be the behavior 

under different failure conditions will often identify new business rules or new actors. 

 

 

 



10 
 

 

9. Four Levels for analysis when employing use case : 

 These four levels can also guide the analysis activity. A step-by-step approach for 

analysis when employing use cases is: 

 

 Step 1. Identify the actors and their goals and get an agreement with the concerned 

stakeholders as to the goals. The actor-goal list will clearly define the scope of the 

system and will provide an overall view of what the system capabilities are. 

 

 

 Step 2. Understand and specify the main success scenario for each UC, giving more 

details about the main functions of the system. Interaction and discussion are the 

primary means to uncover these scenarios though models may be built, if required. 

During this step, the analyst may uncover that to complete some use case some other 

use cases are needed, which have not been identified. In this case, the list of use cases 

will be expanded. 

 

 Step 3. When the main success scenario for a use case is agreed upon and the main 

steps in its execution are specified, then the failure conditions can be examined. 

Enumerating failure conditions is an excellent method of uncovering special situations 

that can occur and which must be handled by the system. 

 

 

 Step 4. Finally, specify what should be done for these failure conditions. As details of 

handling failure scenarios can require a lot of effort and discussion, it is better to first 

enumerate the different failure conditions and then get the details of these scenarios. 

Very often, when deciding the failure scenarios, many new business rules of how to 

deal with these scenarios are uncovered. 

 

 

10. Other Approaches for Problem Analysis : 

The basic aim of problem analysis is to obtain a clear understanding of the needs of the 

clients and the users, what exactly is desired from the software, and what the constraints on 

the solution are.  

1. Divide and conquer 

2. State and Projection 

3. DFD’S( Data Flow diagrams ) 

4. ERD’S(Entity Relationship diagram ) 

 

 The basic principle used in analysis is the same as in any complex task: divide and 

conquer. That is, partition the problem into sub problems and then try to understand 



11 
 

each sub problem and its relationship to other sub problems in an effort to understand 

the total problem.  

 

 The concepts of state and projection can sometimes also be used effectively in 

the partitioning process. A state of a system represents some conditions about the 

system. Frequently, when using state, a system is first viewed as operating in one of 

the several possible states, and then a detailed analysis is performed for each state. 

This approach is sometimes used in real-time software or process-control software. 

  

In projection, a system is defined from multiple points of view . While using 

projection, different viewpoints of the system are defined and the system is then 

analyzed from these different perspectives. The different “projections” obtained are 

combined to form the analysis for the complete system. Analyzing the system from 

the different perspectives is often easier, as it limits and focuses the scope of the 

study. 

 

Data Flow Diagrams : 

 

What is a data flow diagram? 

A data flow diagram (DFD) maps out the flow of information for any process or system. It 

uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data 

inputs, outputs, storage points and the routes between each destination. Data flowcharts can 

range from simple, even hand-drawn process overviews, to in-depth, multi-level DFDs that 

dig progressively deeper into how the data is handled. They can be used to analyze an 

existing system or model a new one. Like all the best diagrams and charts, a DFD can often 

visually “say” things that would be hard to explain in words, and they work for both technical 

and nontechnical audiences, from developer to CEO. That’s why DFDs remain so popular 

after all these years. While they work well for data flow software and systems, they are less 

applicable nowadays to visualizing interactive, real-time or database-oriented software or 

systems. 

 

 

 

 

 

 

 



12 
 

 

 

 

Data Flow Diagram Symbols 

 

 

 

DFD RULES : 

1 All processes should have unique names. If two data flow lines (or data 

stores) have the same label, they should both refer to the exact same data 

flow (or data store). 

2 The inputs to a process should differ from the outputs of a process. 

3 Any single DFD should not have more than about seven processes. 

4 No process can have only outputs. (This would imply that the process is 

making information from nothing.) If an object has only outputs, then it 

must be a source. 

 

 
 

Incorrect 

 

Correct 

5 No process can have only inputs. (This is referred to as a “black hole”.) 

If an object has only inputs, then it must be a sink. 

 

  

Incorrect 

 

Correct 

6 A process has a verb phrase label. 



13 
 

7 Data cannot move directly from one data store to another data store.  

Data must be moved by a process. 

 

  

Incorrect 

 

Correct 

8 Data cannot move directly from an outside source to a data store. Data 

must be moved by a process that receives data from the source and 

places the data in the data store. 

 

  

Incorrect 

 

Correct 

9 Data cannot move directly to an outside sink from a data store.  

Data must be moved by a process. 

 

  

Incorrect 

 

Correct 

10 A data store has a noun phrase label.  

11 Data cannot move directly from a source to a sink. It must be moved by 

a process if the data are of any concern to the system. If data flows 

directly from a source to a sink (and does not involved processing) then 

it is outside the scope of the system and is not shown on the system data 

flow diagram DFD. 

 

  

Incorrect 

 

Correct 

12 A source/sink has a noun phrase label. 

13 A data flow has only one direction between symbols. It may flow in both 

directions between a process and a data store to show a read before an 

update. To effectively show a read before an update, draw two separate 

arrows because the two steps (reading and updating) occur at separate 

times. 

 

  

Incorrect 

 

Correct 

14 A fork in a data flow means that exactly the same data goes from a 



14 
 

common location to two or more different processes, data stores, or 

sources/sinks. (This usually indicates different copies of the same data 

going to different locations.) 

 

 

 

Incorrect 

 

Correct 

15 A join in a data flow means that exactly the same data comes from any 

of two or more different processes, data stores, or sources/sinks, to a 

common location. 

 

 

 

Incorrect 

 

Correct 

16 A data flow cannot go directly back to the same process it leaves. There 

must be at least one other process that handles the data flow, produces 

some other data flow, and returns the original data flow to the 

originating process. 

 

 
 

Incorrect  

Correct 

17 A data flow to a data store means update (i.e., delete, add, or change). 

18 A data flow from a data store means retrieve or use. 

19 A data flow has a noun phrase label. More than one data flow noun 

phrase can appear on a single arrow as long as all of the flows on the 

same arrow move together as one package. 

 



15 
 

 

Entity Relationship Diagrams (ERD’S) : 

What is an Entity Relationship 
Diagram (ERD)? 
 An entity relationship diagram (ERD) shows the relationships of entity sets stored in a 

database. An entity in this context is a component of data. In other words, ER 

diagrams illustrate the logical structure of databases. 

 

 Any object, for example, entities, attributes of an entity, relationship sets, and 

attributes of relationship sets, can be represented with the help of an ER diagram. 

Entity 
Entities are represented by means of rectangles. Rectangles are named 

with the entity set they represent. 

 

 

Attributes 
Attributes are the properties of entities. Attributes are represented by 

means of ellipses. Every ellipse represents one attribute and is directly 

connected to its entity (rectangle). 

 

If the attributes are composite, they are further divided in a tree like 

structure. Every node is then connected to its attribute. That is, 

composite attributes are represented by ellipses that are connected with 

an ellipse. 



16 
 

 

 

Multivalued attributes are depicted by double ellipse. 

 

 

 

 

 

 

 

 

 



17 
 

Derived attributes are depicted by dashed ellipse. 

 

 

Relationship 
Relationships are represented by diamond-shaped box. Name of the 

relationship is written inside the diamond-box. All the entities 

(rectangles) participating in a relationship, are connected to it by a line. 

 

Binary Relationship and Cardinality 

A relationship where two entities are participating is called a binary 

relationship. Cardinality is the number of instance of an entity from a 

relation that can be associated with the relation. 

 One-to-one − When only one instance of an entity is associated with the 

relationship, it is marked as '1:1'. The following image reflects that only one 

instance of each entity should be associated with the relationship. It depicts 

one-to-one relationship. 

 



18 
 

 One-to-many − When more than one instance of an entity is associated 

with a relationship, it is marked as '1:N'. The following image reflects that 

only one instance of entity on the left and more than one instance of an 

entity on the right can be associated with the relationship. It depicts one-to-

many relationship. 

 

 Many-to-one − When more than one instance of entity is associated with 

the relationship, it is marked as 'N:1'. The following image reflects that more 

than one instance of an entity on the left and only one instance of an entity 

on the right can be associated with the relationship. It depicts many-to-one 

relationship. 

 

 Many-to-many − The following image reflects that more than one instance 

of an entity on the left and more than one instance of an entity on the right 

can be associated with the relationship. It depicts many-to-many 

relationship. 

 
 

 



19 
 

11.Validation: 

 

In software project management, software testing, and software 

engineering, verification andvalidation (V&V) is the process of checking that 

asoftware system meets specifications and that it fulfills its intended purpose. It may also be 

referred to as software quality control. 

 

12.Software Architecture: 

What is architecture? Generally speaking, architecture of a system provides a very high level 

view of the parts of the system and how they are related to form the whole system. That is, 

architecture partitions the system in logical parts such that each part can be comprehended 

independently, and then describes the system in terms of these parts and the relationship 

between these parts. 

 

Role of Software Architecture : 

Some of the important uses that software architecture are: 

 
 

1. Understanding and communication: 

 An architecture description is primarily to communicate the architecture to its 

various stakeholders, which include the users who will use the system, the 

clients who commissioned the system, the builders who will build the system, 

and, of course, the architects.  

2. Reuse : 

 The software engineering world has, for a long time, been working toward a 

discipline where software can be assembled from parts that are developed by 

different people and are available for others to use. If one wants to build a 

software product in which existing components may be reused, then 

architecture becomes the key point at which reuse at the highest level is 

decided.  

 

 



20 
 

 

3. Construction and Evolution: 

 As architecture partitions the system into parts, some architecture-provided 

partitioning can naturally be used for constructing the system, which also 

requires that the system be broken into parts such that di erent teams (or 

individuals) can separately work on dif erent parts. A suitable partitioning in 

the architecture can provide the project with the parts that need to be built to 

build the system. As, almost by definition, the parts specified in an 

architecture are relatively independent (the dependence between parts coming 

through their relationship), they can be built independently. 

4. Analysis :  

 It is highly desirable if some important properties about the behavior of the 

system can be determined before the system is actually built. This will allow 

the designers to consider alternatives and select the one that will best suit the 

needs. Many engineering disciplines use models to analyze design of a 

product for its cost, reliability, performance, etc. Architecture opens such 

possibilities for software also.  

 

13.Architecture Views: 

In software different drawings are called views or structures. 

 

SOFTWARE STRUCTURES 

Some of the most common and useful software structures are :  

3 different views / 3 different styles : 

 

1. Module 

2. Component and Connector 

3. Allocation 

 

 

 

 

 

 

 



21 
 

 

Figure 2-3. Common software architecture structures 

 

 

1. In a module view, the system is viewed as a collection of code units, each 

implementing some part of the system functionality. That is, the main elements in this 

view are modules. These views are code-based and do not explicitly represent any 

runtime structure of the system. Examples of modules are packages, a class, a 

procedure, a method, a collection of functions, and a collection of classes.  

 

 

2. In a component and connector (C&C) view, the system is viewed as a collection of 

runtime entities called components. That is, a component is a unit which has an 

identity in the executing system. Objects (not classes), a collection of objects, and a 

process are examples of components. While executing, components need to interact 

with others to support the system services. Connectors provide means for this 

interaction. Examples of connectors are pipes and sockets. Shared data can also act as 

a connector. 

 

3. An allocation view focuses on how the different software units are allocated to 

resources like the hardware, file systems, and people. That is, an allocation view 

specifies the relationship between software elements and elements of the 

environments in which the software system is executed. They expose structural 

properties like which processes run on which processor, and how the system files are 

organized on a file system. 

 

 

 

 



22 
 

 

14.Components and Connector View (C&C View): 

 

Component: 
Components are generally units of computation or data stores in the system. 

Connector: 
Connectors define the means of interaction between these components. 

 

A C&C View describes a runtime structure of the system – what components exist 

when the system is executing and how they interact during the execution. 

 

 

 

 

 

 

 

 



23 
 

 

 

 

 

 

 

 

 



24 
 

Pipe and Filter Architectural Style 
 

The Pipe and Filter is an architectural design pattern that allows for stream/asynchronous 

processing. In this pattern, there are many components, which are referred to as filters, and 

connectors between the filters that are called pipes. Each filter is responsible for applying a 

function to the given data; this is known as filtering. Filters can work asynchronously. The 

final output is given to the consumer, known as a sink. 

 

The diagram below shows a simple representation of the pipe and filter architectural style. 

In this example we demonstrate how a pizza is made using this style. We are using 5 filters, 

with 3 of them working asynchronously. We implement the first few filters to process the raw 

ingredients to create the basic elements for the pizza(the vegetables, the sauce, and the 

pizza base). When all three of these have been completed, we can assemble them. After it 

has been assembled, we can then add the cheese to the pizza, and bake it, before 

delivering it to our customer, the sink. 

 

 
Shared Data Architectural Style 

 
Data is shared between components through shared storage. Communication 

between the computational components and shared data is an unconstrained 

read-write protocol. 

 

Types of Components 

There are two types of components − 

 A central data structure or data store or data repository, which is 

responsible for providing permanent data storage. It represents the 

current state. 



25 
 

 A data accessor or a collection of independent components that operate 

on the central data store, perform computations, and might put back the 

results. 

Interactions or communication between the data accessors is only through the 

data store. The data is the only means of communication among clients. The 

flow of control differentiates the architecture into two categories as Repository 

Architecture Style and Blackboard Architecture Style. A brief detail about 

both the categories is given below – 

 

Repository Architecture Style 

In Repository Architecture Style, the data store is passive and the clients 

(software components or agents) of the data store are active, which control the 

logic flow. The participating components check the data-store for changes. 

A client sends a request to the system to perform actions (e.g. insert data). The 

computational processes are independent and triggered by incoming requests. 

If the types of transactions in an input stream of transactions trigger selection 

of processes to execute, then it is traditional database or repository architecture, 

or passive repository. This approach is widely used in DBMS, library 

information system, the interface repository in CORBA, compilers, and CASE 

(computer aided software engineering) environments. 

 
Advantages 
Repository Architecture Style has following advantages − 

 Provides data integrity, backup and restore features. 



26 
 

 Provides scalability and reusability of agents as they do not have direct 

communication with each other. 

 Reduces overhead of transient data between software components. 

Disadvantages 

Because of being more vulnerable to failure and data replication or duplication, 

Repository Architecture Style has following disadvantages − 

 High dependency between data structure of data store and its agents. 

 Changes in data structure highly affect the clients. 

 Evolution of data is difficult and expensive. 

 Cost of moving data on network for distributed data. 

 

 

Client-server Architectural Style 

 

The client–server model is a distributed application structure that 

partitions tasks or workloads between the providers of a resource or 

service, called servers, and service requesters, called clients.
[1]

 Often 

clients and servers communicate over a computer networkon separate 

hardware, but both client and server may reside in the same system. A 

server host runs one or more server programs which share their resources 

with clients. A client does not share any of its resources, but requests a 

server's content or service function. Clients therefore initiate 

communication sessions with servers which await incoming requests. 

Examples of computer applications that use the client–server model 

are Email, network printing, and the World Wide Web. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Distributed_application
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#cite_note-1
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Host_(network)
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Network_printing
https://en.wikipedia.org/wiki/World_Wide_Web


27 
 

15.Documenting the architecture Design 

As I’ve already mentioned, the design and documentation are not the same. On the other 

hand, these issues are complementary. Designing the larger part of the application which 

won’t be documented is pointless. Today, I’ll think about what is, what for and why do we 

need good documentation. 

What is the documentation of architecture? 

The first association – a diagram. Certainly, to some extent correct, but only partially. 

Firstly, we can’t describe one diagram as documentation. Architecture, even in a simple 

project, is a complex and multifaceted notion, therefore it can’t be presented on one diagram. 

Instead, we should create multiple views, presenting architecture from different perspectives 

and with different accuracy. 

Secondly, despite the fact that one picture is worth a thousand words, information such as 

standards and explanation of taken decisions, is hard to present in a picture. In that case we 

should use other artefacts e.g., text or code snippets. 

Objectives of documentation 

Before we eagerly start preparing documentation of architecture, because that is what best 

practices say, it is worth considering what the point of doing this is. 

We can enumerate a few basic objectives of documentation: 

 Communication with the client – it can be the basis for presentation of how quality 

requirements are going to be fulfilled, and how complex and expensive will be the solution. 

 Creating a guide for developers – the main purpose will be to create the source of 

truth, the reference point for programmers, in case they have any doubts regarding solution 

they would like to use. 

 Team education – good documentation will help to promote information about 

changes in the architecture, and will be a good foundation for discussions concerning the 

system development. 

How much documentation and for whom 

There is no right or wrong number of artefacts documenting the architecture. Once again, it 

depends on the team, its dynamics and the environment. It’s always worth considering the 

reasonableness of creating another element of documentation regarding its purpose. Not 

always more documentation is better. While deciding how much and what kind of artefacts 

we are going to create, it’s better to bear in mind that we won’t be able to solve all the 

communication problems with the use of documentation: 



28 
 

The primary problem with documentation is the difference between context and content. 

Documentation can provide content, but understanding the context requires domain 

expertise. 

Existing documentation, even if good and valid, must be understood. To achieve this we need 

good relations, interactions and cognitive empathy among team members as well as between 

the team and the client. 

Form of documentation 

We all know that the value of diagrams presenting relations and behaviours of architectural 

elements is invaluable. However, diagrams aren’t equal, and I don’t mean differences 

between class diagrams and sequences diagrams. Some of them are explicit and 

understandable, however there are also the ones we look at, and don’t understand what the 

author had in mind. 

As we all know the most common standard in the industry is UML. However, for many, not 

without reason, this standard is too complicated to illustrate the majority of solutions. The 

problem is so old and common that at the turn of the century Martin Fowler wrote the guide: 

“UML Distilled: A Brief Guide to the Standard Object Modeling Language”. In his book he 

describes how to pragmatically use UML. How to use its essence to make our diagrams clear 

and understandable, without wasting time on tunning them to make compliant with standard. 

To summarize the above deliberation, diagrams documenting the application architecture can 

be divided into: 

 Formal – compatible with standard (usually UML), which makes them explicit. They 

are a good choice if we decide to create a complex documentation with the use of CASE 

tools. It makes sense, especially if we develop a project of the system with a closed 

specification. 

 Informal – “rectangles and arrows” usually drawn on a piece of paper, whiteboard or 

flip chart to illustrate the idea we are talking about, or to back up our thinking processes. 

They are highly unclear and without context of people involved in their creation, they may be 

more confusing than understood. 

 Hybrid – a merger of the two mentioned methods, also known as “Arbitrary 

Modelling Language” i.e. using 20% of standard to create 80% of uniqueness. Diagrams have 

a good value for money spent on creating them. Definitely, it is the best way of creating 

documentation to support the above objectives: communication with the client, creating a 

guide for developers and education. 

The golden thought of software documentation 

The above deliberations about documentation may be summed up in two sentences: 

Documentation has to have its purpose, otherwise it is pointless. What is more, the amount of 

documents should be barely sufficient, but never insufficient. 

 



29 
 

16.Evaluating Architectures : 

 

 

 



30 
 

 

 

 In this way Architecture is Evaluated. Architecture is evaluated to see that it satisfies 

the requirements. A common approach is to do a subjective evaluation with respect 

to the desired properties. 

 



31 
 

    UNIT 3  

         [QUESTIONS] 

 

1.Explain about  Value of good SRS . 

 

2. What is  Requirement Process ? 

 

3.a)Explain Requirement Specification  

 

b)What are desirable characteristics of an SRS ? 

 

4. WHAT ARE COMPONENTS OF AN SRS 

 

5. Explain Structure of a Requirements Document. 

 

 

     6. Discuss Functional Specifications With Use Cases  

 

7. USE CASE , DFD’S , ERD DIAGRAMS FROM 

ASSAIGNMENT . 

 

 

8. How do you Develop Use Cases ? 

 

9.What are Four Levels for analysis when employing use case ? 

10.What are Other Approaches for Problem Analysis ? 

11.What is DFD?Explain with example. 

12.Explain about ERD diagrams. 

13.What is Validation. 

14.what is software Architecture? Explain role of software 

architecture. 



32 
 

15.What is an architecture View.What are different architecture 

views. 

    [or] 

What are different architecture structures. 

16.Explain about C&C View. 

17.What are different architectural styles. 

18.Why and how do you document architecture design. 

19.How do you evaluate architecture. 

Repeated & previous papers Questions 

1. a) What are the characteristics of a good SRS? 8 M 

b) Describe the architecture styles for C and C view. 

 

2. a) Describe about requirement process and requirement 

        specification of SRS. 8 M 

b) Describe about components and connector view. 

3. Explain the ways and means for collecting the software    

requirements and how are they organized and represented? 16 

 

4.Explain about Shared Data Architecture Style. 

 

 

 

 
 

 


